MOLYBDENUM DISULPHIDE (MOS2) - the potential star of future electronic devices

With the continuous development of science and technology, the applications of new materials are becoming more and more widespread. Two-dimensional materials have drawn much attention due to their unique physical properties and broad application prospects. Today, we will discuss a high-profile two-dimensional material - molybdenum disulfide (MoS2).

molybdenum disulfide1

(MOLYBDENUM DISULPHIDE)

Characteristics of molybdenum disulfide (MoS2)

1. Excellent conductive properties

The electrical conductivity of MoS2 is outstanding among two-dimensional materials. Under the right conditions, its electrical conductivity is comparable to copper's, giving MoS2 great application potential in electronic devices. Its excellent electrical conductivity comes from its unique electronic structure. There is a direct band gap in the energy band structure of MoS2, which allows electrons to quickly jump from the valence band to the conduction band under excitation, generating electric current.

2. Good mechanical properties

MoS2 has excellent mechanical properties, and its tensile strength and Young's modulus are similar to steel. This strength and toughness give MoS2 great potential in making durable and efficient electronic devices. Good mechanical properties allow MoS2 to be used to make more durable and reliable electronic devices, thereby extending the device's service life.

3. Stable chemical properties

MoS2 has stable chemical properties and does not readily react with other elements. This stability allows MoS2 to maintain its original properties and structure under various environmental conditions, allowing it to work stably in various environments.

Application of MoS2 in electronic devices

1. Transistor

MoS2 is an ideal material for manufacturing next-generation transistors due to its excellent electrical conductivity and mechanical properties. Traditional silicon transistors have reached their physical limits, and we need new materials to break through this limit. Compared with traditional silicon transistors, MoS2 transistors have higher switching speeds and lower energy consumption because, in MoS2 transistors, the mobility of electrons is higher, resulting in greater current flow. In addition, because MoS2 transistors have a more significant energy gap, they can operate at lower voltages, thus reducing energy consumption.

2. Solar cells

MoS2 has a high light absorption coefficient and a moderate energy gap, making it an ideal material for manufacturing high-efficiency solar cells. Traditional silicon solar cells have reached a relatively high level of conversion efficiency, but there are still some limitations. MoS2 solar cells have the potential to break through these limitations and improve conversion efficiency. In addition, the mechanical properties of MoS2 allow solar cells to remain stable when subjected to environmental factors. MoS2 solar cells can work typically, even under harsh environmental conditions.

molybdenum disulfide2

(MOLYBDENUM DISULPHIDE)

3. Storage device

Because MoS2 has high charge density and good stability, it is also used in manufacturing memory devices. Traditional storage devices such as flash memory have problems, such as slow writing speed and short lifespan. MoS2 storage devices may solve these problems and provide more efficient and reliable storage solutions.

Although MoS2 has broad application prospects, current research is still in its infancy. In the future, as scientific researchers gain a deeper understanding and mastery of MoS2, it will be widely used in various electronic devices. We look forward to MoS2 bringing us more breakthrough innovations and technological advancements. At the same time, governments and enterprises will also increase investment to promote the application research and industrialization process of MoS2vhis, which will bring tremendous opportunities and challenges to economic and social development.

Supplier

Luoyang Tongrun Nano Technology Co. Ltd. (TRUNNANO) is a trusted global chemical material supplier & manufacturer with over 12-year-experience in providing super high-quality chemicals and Nanomaterials, including boride powder, nitride powder, graphite powder, sulfide powder, 3D printing powder, etc.

If you are looking for high-quality potassium silicate liquid, please feel free to contact us and send an inquiry.



Aluminum steel clad plates: new materials lead innovation in the construction industry

Aluminium clad steel sheet (referred to as "steel-aluminum alloy") are based on ordinary low-carbon steel panels. The manufacturing process is relatively intricate and needs multiple procedures. First, the aluminum and steel plates need to be surface treated to make the surface smooth and clean, coated with a metal or alloy layer, compounded under a certain temperature and pressure, and finally cooled and processed.

The aluminum-steel composite panel is a new type of composite material that combines the advantages of aluminum plate and steel plate. It has the characteristics of high stamina, rust resistance, gorgeous look and very easy handling. It is extensively used in building, cars, ships, aerospace and other fields.

Aluminium clad steel plate 

What problems will occur with aluminum steel plates after failed wire drawing and oxidation?

Although brushed oxidation is a very easy and common method, everything can be flawed. Some aluminum steel plates that fail to draw and oxidize will have the following problems.

First of all, the drawing lines may be shallow. This is most likely caused by the failure of the drawing machine to control it well. This may reduce the corrosion resistance of the aluminum plate. Then the surface of the aluminum plate is sanded. This may be because the temperature in the working tank is too high, resulting in a chemical reaction and sanding.

Then there is the uneven drawing. The common ones are that the width of the aluminum plate fed needs to be more consistent, and the positioning and drawing operation during drawing lead to inconsistent wear of the drawing roller. The operator must control the width of the aluminum plate to be consistent so that beautiful brushed aluminum plates can appear.

Aluminium clad steel plate 

Precautions and characteristics of outdoor wall aluminum panels

Outdoor wall aluminum panels and plastic steel panels have gradually entered the decoration of all rooms, especially for their smooth, colorful surface, impact resistance, easy cleaning, durability, and fast construction. They have been widely used, but for some novices, the owners still It will need to be clarified. It is mainly used for aluminum and plastic panels and outdoor wall aluminum panels.

1. What are the main reasons for using aluminum composite panels for outdoor walls?

Aluminum panels are mainly used in dining rooms, bathrooms, heating hoods and bedrooms in the form of partitions. The following materials need to be paid attention to during construction. The board must be dry and flat. The aluminum and plastic panels are glued. When paying attention to the glue, it must be uniform, and the aluminum composite panel should be separated into several pieces according to the style needs when used.

Aluminium clad steel plate 

2. What are the characteristics of aluminum composite panels for outdoor wall aluminum panels?

This type of product is very easy to process, making it ideal for users looking for high efficiency and time savings. Aluminum and plastic panels can significantly shorten the construction period and cost, and aluminum panels can decorate walls.

3. Check the discoloration and discoloration of outdoor wall aluminum panels and plastic panels.

This type of problem will occur mainly due to incorrect selection of boards. Generally speaking, the flavors of these products' inner and outer panels differ from the surface coatings of the two panels, which determines the different occasions it is suitable for. The surface of the boards used in the room is usually coated with resin coating, which cannot adapt to the harsh outdoor environment. If used outside the process, it will naturally accelerate the aging process and cause discoloration and discoloration.

Aluminium clad steel plate 

4. Outdoor wall aluminum plate

This type of problem is usually due to the wrong choice of adhesive. Silicone rubber offers unique advantages as an ideal adhesive for aluminum panels and outdoor plastic projects. However, when purchasing aluminum plates, a special quick-drying glue is required. This glue can be used indoors as well as outdoors in environments where climate change is permanent. I believe aluminum panels are mainly used in craft manufacturing. The aluminum plate is mainly composed of five parts. The adhesive layer bonds the plate's upper and lower layers through gelation. It uses inorganic substances for internal filling. , will not be lost to the environment, and can also be applied to the external insulation of equipment pipelines. In addition, many lightweight fillers are used to make the board's performance more outstanding. However, to increase the aesthetic effect of aluminum silicate plates, coatings are often chosen to decorate the surface, increasing the aesthetics and making the plates suitable for various environments.

Supplier

TRUNNANO is a supplier of steel powder and metal clad plates with over 12 years experience in nano-building energy conservation and nanotechnology development. It accepts payment via Credit Card, T/T, West Union and Paypal. Trunnano will ship the goods to customers overseas through FedEx, DHL, by air, or by sea. If you are looking for high-quality steel powder and metal clad plates please feel free to contact us and send an inquiry.

building materials industry indispensable good material

Amazing! The best building material for the industry.

Cement foam board is widely used. Its superior performance can be seen in:

Achieving good fire insulation performance

Cement foam The board is classified as a non-combustible, inorganic thermal insulating material of class A. It can maintain its integrity even at high temperatures and improve the fire resistance of the building. Closed porosity is more than 95%. It has excellent thermal insulation properties.

Sound insulation with excellent performance

Cement foam board can have a sound insulation coefficient greater than 45 decibels. This is due to the formation many porous, independent bubbles.

Lightweight seismic capacity

Cement foam board can resist a magnitude 9 earthquake by welding steel structure. Its density is about 250kg/cubic-meter.

Construction is efficient and convenient

Cement Foam Board has many advantages, including being easy to construct. It also has a shorter construction period. There is no need for additional materials like sand or cement. The materials can be stacked easily and efficiently, it takes up less space, uses less equipment, produces no construction waste and does not require plastering. Cement Foam Board can be constructed in 60 minutes by three people, compared to the traditional block walls.

Strengthens the bonding and compression forces

The national testing agency has verified that the addition of special fibre increases the compressive force of the cement board. Its bending load can be up to three times its own weight (1.5x the national standards), its compressive power can be over 5MPa (3.5MPa for the national standards), and its hanging strength is above 1,500N (1,000N for the national standards).

Environment protection, energy savings and non-toxic and safe

Cement fly ash is used to make cement foam. It won't melt at high temperatures, and it doesn't emit any toxic gases. It's a material that is both environmentally friendly and safe. Cement foam board is not recyclable, and this fact has been recognized by the national industrialization policy.

Cement Foam Board is used widely in industrial plants with large spans, storage facilities, large machine workshops, stadiums exhibition halls airports large-scale utilities and mobile homes as well as residential mezzanines and residential wall insulation. The problems associated with foam insulation before have been overcome by cement foam board. These include poor thermal insulation properties, high thermal conduction, and cracking.

Which is the best way to backfill a bathroom

The backfilling of the bathroom is a crucial part of any renovation. Backfilling is an essential part of bathroom renovations. It has many purposes, including protecting the pipeline from leakage, improving the thermal insulation capability of the bath, and more. In selecting bathroom materials, you should consider several factors depending on your specific situation. For example, take into account the performance and cost of backfill material as well the environmental protection.

There are five types of backfills available on the market: Common slags, Carbon slags, Ceramic Backfills and Foam Cement Backfills. There's some confusion over different backfills.

Backfilling with slag can be cheaper, but because it is heavy and can cause the slab to crack easily, this could lead to leakage of water.

It is cheaper to use overhead backfill because you don't need as much material.

Since a few decades, foam cement backfilling has been popular. But does it come with any disadvantages?

For your information, here are five bathroom backfill materials with their advantages and disadvantages and some selection advice:

Building debris backfill

Advantages:

The advantages of slag backfill are its lower cost, ease of construction and certain thermal insulation properties.

Disadvantages:

Backfilling with construction waste will damage the waterproof layer and the pipeline due to its sharp edges.

Recommendation:

Has been eliminated. Do not recommend this method. The budget of the family is too small to use construction debris backfill. To protect the waterproofing of the ground, first use fine sand, then red brick, to protect the pipeline. The backfill should be compacted in layers. Finally, mud-mortar to level the surface will provide good secondary drainage.

Carbon Dregs Backfill

Advantages:

Carbon slag as a backfill has many advantages, including its low cost, ease of construction, lightweight structure, good moisture absorption, and excellent moisture control.

Disadvantages:

Carbon dregs are not as stable, they can easily deform or fall off and they're flimsy. They also absorb moisture, which increases pressure on the floor slab.

Recommendation:

In recent years, carbon slag has rarely been chosen as a backfill in bathrooms due to its negatives.

Ceramic Backfill

Advantages:

Ceramic backfill has many advantages including high strength, good insulation and corrosion resistance.

Disadvantages:

Before pouring in the ceramic, use lightweight bricks for layered partition. Divide the bathroom into several squares. Fill the squares with the ceramic, then place a reinforcing mesh with a diameter around one centimetre. Finally, level with cement mortar.

Suggestion: Look at your family's budget and take it into consideration.

Overhead Backfill

Advantages:

Backfilling with overhead backfill has many advantages, including its simplicity, stability, inability to deform and easy fall-off.

Disadvantages:

The labour cost of backfilling is higher because the construction cycle is longer. The bottom drain is located overhead and will make the sound of running waters more noticeable.

It is important to carefully consider whether the disadvantages of the situation outweigh any advantages.

Foamed Cement Backfill

Advantages:

Foamed cement is an increasingly popular backfill. It is also safe and eco-friendly. The raw material for cement foaming agents, plant-based fat acid, is both safe and environmentally friendly.

Benefits include good heat conservation, light weight, high strength and corrosion resistance. The backfilling process is greatly accelerated and reduced in cost, as it can be filled seamlessly and with very little effort.

Foamed cement can be mixed with cement and used to fix the pipe. If not, the pipe will easily float.

Disadvantages:

It is best to find a builder that has worked with foam cement or look up construction tutorials.

Suggestion:

The majority of people backfill their bathrooms with foamed-cement. Its advantages are still quite obvious.

The five types of backfill for bathrooms all have advantages and disadvantages. In order to choose the best material for your bathroom backfill, you should consider a number of factors. You must always consider the environment when choosing bathroom backfill materials to ensure the decor of the bathroom is safe and sustainable.

Properties and Application of Hafnium Carbide

Hafnium carbide (HfC), is a chemical compound with a distinct character. It has many uses.

1. Hafnium Carbide: Its Properties

Hafnium carburide is a grayish powder that belongs in the metal carbide category. It is characterized with a high melting temperature, good hardness and high thermal stability.

Physical Property

Hafnium carburide crystals have a face-centered cubical structure and a lattice coefficient of 0.488nm. It is a hard material with a melting temperature of 3410 degrees Celsius.

Chemical property

Hafnium carburide is chemically stable, and it is not soluble in water or acid-base solutions. It is not easily affected by high temperatures. This material is stable at high temperatures. Hafnium carburide has a high radiation resistance, and is therefore suitable for use in nuclear reactors and particle acceleraters.

2. Hafnium Carbide Application

Hafnium carbide is used widely in many industries due to its high melting points, high hardness as well as good thermal and chemical properties.

Electronic field

Hafnium carburide is widely used in electronic fields, and it's a key component of electronic glue. Electronic paste is a substance used on printed circuit boards. Hafnium can be added to the paste to increase its adhesion. Hafnium can be used as an electronic device sealant, increasing the reliability and durability of electronic devices.

Catalytic field

Hafnium carburide is an excellent catalyser that can be used to catalyze countless chemical reactions. One of the most common uses is in auto exhaust treatment, which reduces harmful gas emissions. Hafnium carburide is used in a variety of fields, including hydrogenation, denitrification and petrochemicals.

The optical field

Hafnium carbide is a transparent material that can be used for optical components and fibers. It can enhance the durability of optical elements and reduce light losses. Hafnium carbide can be used for key components such as lasers, optoelectronics and optical devices.

Ceramic field

Hafnium carbide can be used to improve the density and hardness of ceramic materials. It can be used to produce high-performance materials such as high temperature ceramics and structural Ceramics. Hafnium carbide can be used to grind and coat materials.

RBOSCHCO

RBOSCHCO, a global chemical materials supplier and manufacturer, has over 12 year experience in providing high-quality Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a market leader in the nanotechnology industry, dominates this sector. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. You can send an email if you're looking for Hafnium carburide to: sales1@rboschco.com

Application Fields of Gallium Nitride

The wide-gap semiconductor material GaN is widely used due to its excellent electrical, optical and physical properties.

1.Semiconductor light

Gallium Nitride is widely used in semiconductor lighting. The high reflectivity, transparency and luminescence of gallium nitride material make it ideal for high-performance, LED lamps. LED lamps offer a higher level of luminous efficiency than fluorescent and incandescent bulbs, as well as a longer life span. This makes them suited for use in many fields, including indoor and exterior lighting, displays, automobile lighting, etc.

Gallium Nitride is the most common material used for substrates of LED chips in semiconductor lighting. LED chips, the main components of LED lighting, are directly responsible for the overall performance. They determine the LED light's luminous efficacy and service life. Gallium Nitride is an excellent substrate material because it has high thermal conductivity. It also has high chemical stability and stability. It improves the LED chip's luminous stability and efficiency, as well as reducing manufacturing costs.

2.High-temperature electronic devices

Gallium Nitride is also widely used for high-temperature electronics devices. Gallium nitride, which has high electron saturation rates and high breakdown electric fields, can be used for electronic devices that work in high-temperature environments.

Aerospace is a harsh field and it's important to have electronic devices that work reliably in high temperature environments. As a semiconductor high-temperature material, gallium-nitride materials are primarily used to make electronic devices like transistors and field effect transistors for flight control and control of fire systems. Gallium nitride is also used in power transmission and distribution to produce high-temperature devices, such as power electronics switches and converters. This improves the efficiency and reliability of equipment.

3.Solar cells

Gallium nitride solar cells also receive a lot attention. High-efficiency solar panels can be produced due to its high transparence and electron saturation rate.

Silicon is the main material in most traditional solar cells. Silicon solar cells are inexpensive to manufacture, but have a narrow bandgap (about 1eV), which limits their efficiency. Gallium-nitride solar cell have a greater energy gap width (about 2.30eV), and can therefore absorb more sunlight, resulting in a higher photoelectric efficiency. The manufacturing cost of gallium-nitride cells is low. They can offer the same photoelectric converter efficiency for a lower price.

4.Detectors

Gallium Nitride is also widely used as a detector. They can be used to manufacture high-efficiency detectors like spectral and chemicals sensors.

Gallium Nitride can also be used as a material to make X ray detectors that are efficient and can be installed in important buildings such as airports. Gallium nitride is also used for environmental monitoring to produce detectors like gas and photochemical sensor, which detect environmental parameters, such air quality, pollutants, and other environmental parameters.

Other applications areas

Gallium nitride can be used for many different applications. Gallium nitride is used, for instance, to make microwave and high frequency devices such as high electronic mobility transistors and microwave monolithic Integrated Circuits (MMICs) that are used in fields like radar, communications, and electronic countermeasures. As well, gallium nitride It can also be used for the manufacture of high-power lasers and deep ultraviolet optoelectronic device.

Applications of Nickel-based Alloy Rod

Nickel alloy rod contains many other elements including iron, chrome, and molybdenum. Nickel-based alloys are more resistant to corrosion and stable at high temperatures than conventional iron alloys. This makes them popular in many industrial and engineering applications.

Petrochemical Industry

Nickel-based rods have become a common material in the petrochemical industries. In petroleum cracking, nickel-based rods are used for reactor manufacturing. They can withstand high pressure and temperature conditions and offer good corrosion resistance. Nickel-based rods can also be used for manufacturing equipment like pipelines and containers during petrochemical processes.

Nickel-based alloys rods are used primarily in the petrochemical industries to produce high-temperature, high-pressure, reactors, towers, and heat exchangers. It is essential to select materials with high resistance to corrosion, as well as high temperature stability, when working in environments that have high temperatures, pressures, and corrosive mediums. Nickel-based rods are a material that has excellent properties, and is used to manufacture petrochemical machinery.

Nuclear Industry

The nuclear industry can use nickel-based alloys rods as manufacturing materials. These rods are highly resistant to corrosion and high temperature. The nickel-based rods, with their excellent high-temperature stability and corrosion resistance, can be used as structural materials or shells for nuclear fuel component components.

In nuclear reactors nickel-based alloys rods are used mainly as materials to manufacture fuel components. These components have to be able work in environments with high temperature, high pressure, and radioactivity. These components must be highly resistant to corrosion and high temperature. Nickel-based rods are a material that has these properties, and is therefore a preferred choice for the manufacture of nuclear fuel elements.

Aerospace field

Nickel-based alloys rods are used primarily in aerospace to make key components such as aviation engines and rocket motors. Nickel-based materials are used in aerospace because of their high-temperature resistance and excellent stability.

In aviation engines nickel-based alloys rods are used primarily as a manufacturing material for turbine blades and guides vanes. These components have to be able to withstand high temperatures, pressures and speeds. These components must have excellent high temperature strength, creep strength, corrosion resistance. Nickel-based alloys rods possess these properties, and are therefore one of aviation engine manufacture's preferred materials.

Automotive Manufacturing sector

Nickel-based alloys rods can be used in the manufacture of high-performance automobile components. Nickel-based rods are used in the manufacture of high-performance automotive components, such as engine cylinder blocks or cylinder heads.

In the automotive industry, nickel-based rods are primarily used to make key engine components, such as cylinders, cylinder heads and pistons. Materials with high strength and corrosion resistance are needed for these components, which will be working in high-temperature and high-pressure environments. Nickel-based alloys rods possess these properties, and are therefore one of automotive engine manufacturers' preferred materials.

Medical device field

Medical devices can benefit from the biocompatibility of nickel-based alloys and their corrosion resistance. This ensures safety and reliability.

Medical devices is a broad field that includes a variety of medical devices including surgical instruments, implant, diagnostic equipment, rehabilitation materials, etc. Amongst these medical devices nickel-based rods are used primarily as raw materials to manufacture high precision and high quality medical devices. In surgical instruments, for example, surgical knives and forceps that are made from nickel-based metal rods provide excellent durability and cutting performance. Orthopedic and cardiovascular implants made with nickel-based rods are biocompatible and have excellent mechanical properties. They can treat a wide range of orthopedic or cardiovascular diseases.

Other fields

Nickel-based alloys rods can be used for a variety of applications, including construction, power and electronics. Nickel-based rods are used in power transmission and structural support for high-rise building. They can also provide outstanding strength and durability. Nickel-based rods are useful for manufacturing key components in the electronics sector, such as circuit boards and materials to shield electromagnetic fields.

About KMPASS

KMPASS is a global supplier and manufacturer of high-quality nanomaterials, chemicals, and other materials. We have over 12 year experience. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leader of nanotechnology manufacturing, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. Send an email to sales2@nanotrun.com if you are interested in Inconel 718 Powder.

What is Lithium stearate powder

Lithium stearate is a crystalline form of lithium.

Lithium stearate has the chemical formula LiSt. It is a white powder that is solid at room temperatures. It is highly lubophilic and forms high light transmission at low concentrations. This compound is soluble only slightly in water and is readily soluble when heated to room temperature in organic solvents, such as acetone and ethanol. Lithium Stearate is stable and thermally safe at high temperatures because it has a melting point and flashpoint. The lithium stearate also has good chemical resistance and is resistant to acids and bases, as well as oxidants, reductants and reducing agents. Lithium is less toxic than other metals, but should still be handled with care. An excessive intake of lithium can lead to diarrhoea or vomiting as well as difficulty breathing. Wearing gloves and goggles during operation is recommended because prolonged exposure to lithium can cause eye and skin irritation.

Lithium stearate:

Surfactant: Lithium Stearate Surfactant, lubricant, and other ingredients are used to make personal care products, such as shampoos, soaps, body washes, and cosmetics. It has excellent foaming properties and good hydrolysis stabilty, resulting in a gentle and clean washing experience.

Lithium stearate has an important role to play in polymer syntheses. It can be used both as a donor and a participant in the formation of polymer chains. These polymers have good mechanical and chemical properties, making them ideal for plastics, rubber fibers, etc.

Lithium stearate can be used as an ingredient in cosmetics. It enhances moisturization, and makes the skin feel softer and smoother. The antibacterial and antiinflammatory properties of lithium stearate can also help with skin problems.

Paints & Coatings: Lithium is used to thicken and level paints & coatings. It helps control the flow, and properties of final coatings. It is resistant to weather and scratches, which makes the coating durable.

Applications of lithium stearate include drug carriers, excipients, and stabilizers. It can enhance the taste and solubility and stability of medications.

Lithium stearate has many uses in agriculture, including as a carrier for fertilizer and a plant-protection agent. It increases the efficiency of fertilizers and improves plant disease resistance.

Lithium stearate may be used in the petrochemical sector as a lubricant or release agent. As a catalyst in petroleum cracking, lithium stearate improves cracking yield and efficiency.

Lithium Stearate Production Process :

Chemical synthesis method

Lithium stearate can be synthesized through a series a chemical reactions. In order to get the lithium metal reacting with the stearate, they are heated together in an organic solvant. After washing and drying, the pure lithium-stearate product is obtained.

Following are the steps for synthesis.

(1) Lithium metal and stearate in organic solvents, such as ethanol heated stirring to fully react.

(2) The reaction solution must be cooled in order to precipitate lithium stearate.

(3) Wash the crystal with water and remove any lithium stearate particles.

The dried crystals are used to make lithium stearate.

Chemical synthesis is a mature technology that offers high efficiency in production and product purity. However, organic solvents have an environmental impact and waste is generated during production.

Methode de fermentation biologique

In biological fermentation, microorganisms such as yeast are used in the medium to produce lithium. This method works on the principle that microorganisms produce stearic and react with metal ions, such as lithium ions, to create lithium stearate.

These are the steps that you will need to take in order to produce your product.

(1) The microorganisms will be inoculated onto the medium containing the precursor substances to fermentation culture.

(2) The filtrate is used to produce a solution of stearic acetic acid.

(3) Add metals (such as the lithium ions) into the solution with stearic to ensure that they fully react.

(4) The reaction mixture is separated, then washed and dried.

The benefits of biological fermentation include environmental protection, less waste discharge and a longer production process. However, the conditions for production are also higher.

Prospect Market for Lithium stearate

The application of lithium in personal care will continue to be important. As a lubricant or surfactant it is important in soaps. shampoos. body washes. and cosmetics. As people's standards of living improve and the cosmetics sector continues to expand, lithium stearate demand will gradually rise.

Second, the use of lithium stearate for polymer synthesis has also increased. It can be used both as a donor and a participant in polymer chain formation. As polymer materials science continues to develop, the demand of lithium stearate increases.

Lithium stearate's application in agricultural, petrochemical, pharmaceutical and other fields is also growing. In the pharmaceutical sector, lithium stearate may be used as a carrier, excipient or drug stabilizer. In agriculture, the lithium stearate is used to protect plants and as a carrier for fertilizer. In the field of petrochemicals, lithium isostearate may be used as an lubricant or release agent. In these areas, the demand for lithium will increase as technology advances.

But the outlook for the lithium stearate market is not without its own challenges. In order to produce lithium metal, it is necessary to use a more expensive production process. Aside from that, the applications of lithium is limited, with a concentration in agriculture, petrochemicals, pharmaceutics, personal care, polymer syntheses, pharmaceuticals and petrochemical products. To expand the scope of application and market demand for lithium stearate, it is important to continually develop new applications and markets.

Lithium stearate powder price :

Many factors influence the price, such as the economic activity, the sentiment of the market and the unexpected event.

You can contact us for a quotation if you're looking for the most recent lithium stearate price.

Lithium stearate powder Supplier :

Technology Co. Ltd. has been supplying high-quality chemical materials for over 12 years.

The chemical and nanomaterials include silicon powders, nitride particles, graphite particles, zinc sulfide particles, boron grains, etc.

Contact us today to receive a quote for our high-quality Lithium Stearate Powder.

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Tungsten alloy heavy plate has low thermal expansion. It is also known for its high density, radiation resistance, thermal conductivity, and electrical conductivity. It is used widely in the aerospace and medical industries.

About Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate:
Powder metallurgy produces compact ingots from high purity tungsten. After powder metallurgy, a series further deformations are made and heat treatments are applied until the final products have been produced.

Properties:
Low thermal expansion and high density, with high thermal conductivity and electrical conductivity. Perfect performance in environments of high radiation exposure.

Applications:
Widely used by the aerospace, medical, and military industries to produce machining tools such as lathes and dimes.



We have a wide range of sizes and grades in tungsten-alloy plates. Contact us for any of your needs.


Payment & Transport:

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate Properties

Alternative Names Tungsten Alloy Plate
CAS Number N/A
Compound Formula N/A
Molecular Mass N/A
Appearance N/A
Melting Point N/A
Solubility N/A
Density 18.5g/cm3
Purity 99.95%
Size It is a great way to customize the look of your home.
Bold point N/A
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young Modulus N/A
Exact Mass N/A
Monoisotopic Mash N/A

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate Health & Safety Information

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Germanium Sulfide (GeS2) is a semiconductor compound with the chemical Formula GeS2. It is easily soluble when heated alkali is used, but not in water.Particle size: 100mesh
Purity: 99.99%

About Germanium Sulfide (GeS2) Powder:
Germanium Sulfide also known as Germanium Sulphide and Germanium Disulfide. GeS2 is the formula of germanium disulfide. It is unstable, easy to sublimate and oxidize, and dissociates in humid air, or an inert atmosphere. Inorganic acids (including strong acid) and water are insoluble.
Germanium disulfide is 2.19g/cm3. Germanium Sulfide consists primarily of Germanium disulfide(GeS2) powder. Melting point is 800 deg C. Germanium disulfide, like many other metal sulfides that are closely related, is the subject of many researches who are researching its potential for energy storage applications such as solid state batteries.
The germanium diulfide crystal has an orthogonal structure. Each cell contains 24 molecules with the following dimensions: A = 11.66a; B = 22.34A; C = 6.86A. Accuracy 1/2%. The space group (C2V19) is FDD. Eight germanium-atoms are arranged on a dual axis. All other atoms take up a general position. These 12 parameters were determined. The germanium atoms are connected with four sulfur atomic trihedrons at an atomic separation of 2.19A. The angle of the two sulfur atoms is 103 degrees.

If you're interested in purchasing Germanium Sulfide (GeS2) Powder , please send us a message to receive the latest Germanium Sulfide Price.

High Purity Germanium Sulfide Granule Powder:

Nature: white powder Crystal structure is orthogonal. Density is 2.19 grams per cm3. Melting point 800 . Unstable high-temperature sublimation or oxidation. In humid air or an inert atmosphere, dissociation. The molten state has a brown, transparent body with a 3.01g/cm3 density, is not soluble in water or inorganic acids, including strong acid, but soluble when heated alkali. By the sulfur vapor and germanium powder from the system. The intermediate products of germanium metallurgy.

germanium sulfide CAS number 12025-34-2
germanium Sulfide Molecular Formula GeS2
germanium sulfide Molar mass 136.77g mol-1
germanium sulfide Appearance White crystals with a translucent appearance
germanium sulfide Density 2.94 g cm-3
germanium sulfide Melting point 840 degC (1,540 degF; 1,110 K)
germanium Sulfide Boiling Point 1,530 degC (2,790 degF; 1,800 K)
Germanium sulfide - Solubility in Water 0.45 g/100mL
germanium sulfide Solubility soluble in liquid ammonia

What is Germanium Sulfide GeS2 Powder produced?
Germanium disulfide may be produced by converting hydrogen sulfide into tetrachloride using a hydrochloric solution.
Germanium disulfide can be prepared by combining germanium with sulfide or hydrogen sulfide.

Applications Germanium Sulfide GeS2 Powder:
Solid-State Batteries: Germanium disulfide, like many compounds closely related, is of particular interest to researchers and manufacturers.
This material can be used to produce cathodes in certain types batteries.
The vulcanized microparticles have great potential to be used as high-performance batteries containing lithium-sulfur.
Electrology: For researchers working on energy storage technology Germanium disulfide is a material that has similar characteristics. It can be used to produce other components and materials in electronic technology.
Catalysts: Germanium disulfide, like many other sulfides has the unique ability to produce more complex chemicals for high-tech devices and other chemical reactions.
As with many materials related to nano-level sulfur, it has many unique optical properties. However, these properties are still not well understood.
This makes the research interest in this material involve a wide range of industries and fields, from electron-to-photovoltaic to imaging techniques.

Germanium Sulfide (GeS2) Powder Storage Conditions
Germanium Sulfide GeS2 is affected by damp reunion, which will have an adverse effect on the powder's dispersion and use. Therefore, it should be packed in vacuum and kept in a dry and cool room. GeS2 powder must also not be exposed to stress.

Packing & Shipping Germanium sulfide powder GeS2
The amount of Germanium Sulfide powder GeS2 will determine the type of packing.
Germanium Sulfide powder packaging: Vacuum packed, 100g,500g or 1kg/bag or 25kg/barrel or as per your request.
Germanium Sulfide Powder Shipping: Can be shipped via air, sea, or express, as quickly as possible after payment receipt.


Technology Co. Ltd., () is an established global chemical material manufacturer and supplier with over 12 years' experience in the production of high-quality nanomaterials. These include boride powders, nitride particles, graphite particles, sulfide particles, 3D printing materials, etc.
Looking for high quality Germanium disulfide powder Send us an email or call to make an appointment. ( brad@ihpa.net )

Germanium Sulfide Properties

Alternative Names germanium(IV) sulfide, germanium disulfide,
germanium disulphide, GeS2 powder
CAS Number 12025-34-2
Compound Formula GeS2
Molecular Mass 136.77
Appearance White Powder
Melting Point 800
Boiling Point 1530
Density 2.94 g/cm3
Solubility In H2O 0.45 g/100mL
Exact Mass 137.86532

Germanium Sulfide Health & Safety Information

Sign Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
Transport Information N/A

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have a high wear resistance. They are widely used by the electricity, electronics and energy industries.

Metal Alloy High Purity Copper Plate, 8.92g/cm3,
Surface:
Brush, hairline, mirrors, oiled, milled.

Dimension:


Applications:
Interior decoration: ceilings, walls, furniture, cabinets, and elevator decoraction.

Payment & Transport:

Metal alloy 8.92g/cm3 high purity polished copper plate properties

Alternative Names Copper Plate
CAS Number N/A
Compound Formula Curiosity
Molecular Mass N/A
Appearance N/A
Melting Point N/A
Solubility N/A
Density 8.92g/cm3
Purity 99.95%, 99.99%, 99.995%
Size
Bold point N/A
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young Modulus N/A
Exact Milligram N/A
Monoisotopic Mash N/A

Health & Safety Information for Metal Alloy 8.92g/cm3 High Purity Polised Copper Plate

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Hafnium Powder is a metal made from hafnium. The most common method to prepare hafnium from sponge hafnium involves hydrogenation and deshydrogenation. Purity>99%
Particle Size : 5-10 Micron

Hafnium Nanopowder:
Hafnium Hafnium on the periodic table : Group 4, Atomic Number d-block, Mass 178.586.
Hafnium a shiny silvery metal. It's resistant to rust because it forms an impenetrable film of oxide on its surface. Hafnium metallic is not affected by acids or bases except hydrofluoric. Hafnium element can be difficult to separate because they have the same atomic sizes.
Hafnium Powder is a dry, light gray metallic powder. The dry powder reacts when it comes into contact with water, producing hydrogen. This is a flammable liquid. The reaction could produce enough heat for hydrogen to ignite.

Hafnium can be found in zirconium minerals. It is a ductile, brightly glistening metal. It is extremely strong and resistant to corrosion. Zirconium, hafnium and other metals have nearly identical chemical properties. (Hafnium however is twice as dense.) This makes them difficult to separate. Hafnium's properties is affected by zirconium.

Hafnium For Sale:
It is one of the most trusted Nano Hafnium HF Powder suppliers. Please feel free to contact us at any time for the most recent Hafnium Price.

Appearance of hafnium and its description:
It is a silvery metal crystal that has a metallic shine.
hafnium powder MF: Hf
hafnium powder Molecular weight: 178.49
hafnium powder Density: 13.31 g/cm3
Hafnium powder Melting temperature: around 2227
Hafnium powder Boiling points: about 4602

Product characteristics of hafnium:
It is a good anticorrosive, resistant to acid and alkali erosion, and soluble in hydrofluoric acids to form fluoride compounds. Hafnium at high temperature can be directly combined to oxygen, nitrogen, other gases, to form nitride. Hafnium in the air is stable, powdered Hafnium easily burns.


The invention relates a superfine, high purity hafnium and a method for preparing it.
Preparation includes the following:
1..The hafnium dioxide powder and reducing agents powder in a molar ration of 1:1 to 1:2 were mixed evenly, and packed into a crucible.
2. The crucible should be placed in the reaction vessel, covered and vacuumed, then filled with argon to wash, heat and reduce, followed by constant temperature reduction.
3. After vacuum, argon is pumped to cool the vacuum;
4 washing: first, pickling and then using deionized filtered water to wash the product. Then, the product is screened before drying.

Nano Hafnium Use:
Hafnium powder can be used to produce hafnium-alloy materials such as hafnium-sputtering targets. It has high heat absorption properties and is exothermic (1 times faster that zirconium, titanium and other alloys), and it can be used for the structure of missiles and jet engines.

Hafnium's refractory properties make it a useful material for turbojet aircraft blades used in freezing point pressure jet engine. Hafnium powder is also used to manufacture valves, high-temperature components and nozzles.

Hafnium rods are used for the majority of nuclear reactor control rods.
Hafnium alloys are used in the production of tantalum, niobium and iron. C103 alloy is used for liquid rocket thruster nodes, like the main engine in the Apollo lunar module. C103 consists of 89 % niobium and 10 % hafnium.

Hafnium, because of its high heat resistance and affinity with oxygen and nitrogen is an excellent scavenger for oxygen and nitrogen. It can be used in both incandescent lights and inflatable lamps. Hafnium, which can release electrons in the air, is also used for plasma cutting.

Storage condition of Hafnium Hf powder:
Hafnium Hf Powder cannot be exposed to the air. The powder should be packed in vacuum and kept in a dry and cool room. Hf Powder should also not be exposed to stress.

Packaging hafnium:
- High strength wooden case: bags with double-layer plastic seals, 50 kg/wooden box.
2) If the customer has special packaging requirements we can package the goods accordingly.


Technology Co. Ltd., () is an established global chemical material manufacturer and supplier with over 12 years' experience in the production of high-quality Nanomaterials. This includes boride powders, nitride particles, graphite particles, sulfide particles, 3D printing materials, etc.
You can contact us by sending an email. (brad@ihpa.net)

Nano Hafnium Hf Powder Properties

Alternative Names hf, hafnium, hafnium, powder price
hafnium powder supplier, hafnium powder msds.
CAS Number 7440-58-6
Compound Formula Hf
Molecular Mass 178.49
Appearance white fine powder
Melting Point 2227
Solubility N/A
Density 13.31 g/cm3
Purity >99%
Particle Size 5-10 Micron
Bold point 4602
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young's Module N/A
Exact Mass N/A
Monoisotopic Mash N/A

Nano Hafnium HF Powder Health & Safety Information

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

Supply Magnesium Granules Mg Granules 99.95%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

Chromium Sulfide Cr2S3 Powder CAS 12018-22-3, 99.99%

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Tungsten Boride WB2 Powder CAS 12007-09-9, 99%

Newstatayoung is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high quality chemicals and Nano materials such as graphite powder, boron powder , zinc sulfide , nitride powder, Calcium nitride, Ca3N2, 3D printing powder, and so on.


And our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Our main product list as following:

Metal and alloy powder: boron, nickel, silicon, copper, iron, aluminum. chrome, silver

Boride powder: magnesium boride, aluminum boride, boron nitride, boron carbide, hafnium boride;

Sulfide powder: Molybdenum sulfide, zinc sulfide, bismuth sulfide;

Oxide powder: ITO, ATO, iron oxide, titanium oxide, manganese oxide, copper oxide;about.jpg

Carbide powder: titanium carbide, manganese carbide, titanium carbonitride, hafnium carbide;

Nitride powder: Aluminum nitride, hafnium nitride, magnesium nitride, vanadium nitride;

Silicide powder: hafnium silicide, molybdenum silicide, tantalum silicide;

Hydride powder: Hafnium hydride, vanadium hydride, titanium hydride, zirconium hydride.etc.

Have any questions or needs, please feel free to contact Newstatayoung.